Electrical Tests on the Composite Cross-Arm and Pylon

── Group meeting₁ Feb. 2017

Qian Wang Ph.D Student Email: qiw@et.aau.dk

Department of Energy Technology Aalborg University, Danmark

Power Pylons of the Future

AALBORG UNIVERSITET

400 kV double circuit composite pylon

Advantages

- More compact structure; •
- Better visual impact in • enviroment;
- Equivalent or even better • power transmission capacity;
- Competitive installation and • maintanence cost.

Comparison between traditional towers and the n<u>ovel</u>20pylon

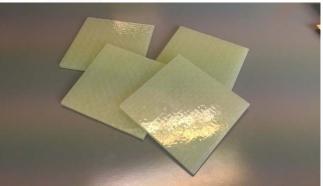
- Planning, design and construction of rigs and setups for tests on the composite material, cross-arm and pylon;
- Selection of suitable composite materials in the cross-arm and pylon body;
- Evaluation of the composite cross-arm's insulation performance;
- Verification of composite pylon's lightning protection system;
- Investigation of the whole composite pylon (combined test with mechanical load).

□ Material selection

• Alternative materials:

Fiberglass reinforced epoxy / vinyl ester

• Alternative manufacturing methods :


Vaccum consolidation; Hose; Filament winding.

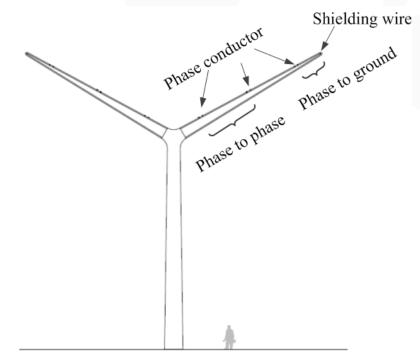
• Pure electrical tests:

Dielectric property test; Partial discharge test; Breakdown test.

• Combined test:

Simultaneous electrical stress and mechar

□ Small/full scale of the cross-arm test

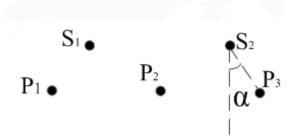


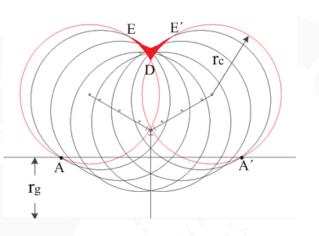
• Pure electrical tests:

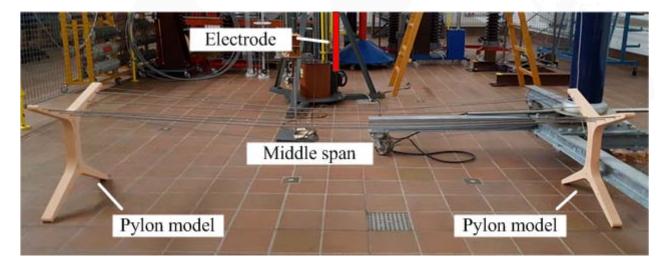
Insulation level;(50 Hz flashover voltage in dry/wet condition)

• Combined test:

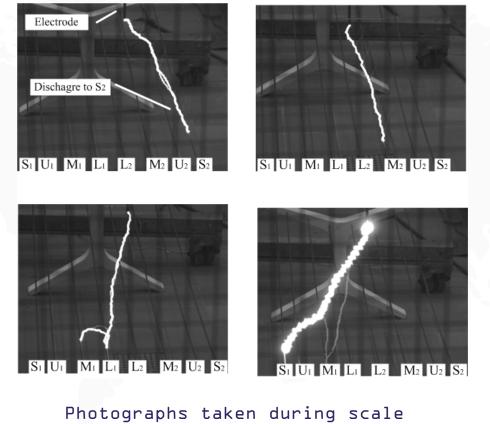
Simultaneous electrical stress and mechanical stress




Fiberglass / epoxy rod made by 'hose' method


□ Evaluation of lightning performance

- Electrical-Geometric Model (EGM) method)
- Scale model test



□ Evaluation of lightning performance

model test

Publications

LLD Q. Wang, T. Jahangiri, C. L. Bak, F. F. Silva, and H. Skouboe, "Investigation on lightning performance of a novel 400 kv double-circuit composite pylon," IEEE Trans. on Pow. Deliv., (submitted).

[2] Q. Wang, T. Jahangiri, C. L. Bak, F. F. Silva, and E. Bystrup. "A state of the art review-methods to evaluate electrical performance of composite cross-arms and composite-based pylons." IEEE Electrical Insulation Conference (EIC), 2016.

E31 Q. Wang, T. Jahangiri, C. L. Bak, F. F. Silva, and H. Skouboe, "Experimental evaluation of shielding angles' effects on lightning performance in a 400 kV double-circuit composite pylon," International Symposium CIGRE Dublin 2017.

[4] Q. Wang, T. Jahangiri, C. L. Bak, F. F. Silva, and H. Skouboe, "Scale model test on a novel 400 kV double-circuit composite pylon," International Conference on Power Systems Transients 2017.