

Planning and Control of Offshore Multiterminal VSC-HVDC (MTDC) Transmission Grids

Date 15 February 2017

Location Department of Energy Technology, Aalborg University

Name presenter Roni Irnawan

Closer look at the North Sea region

HVDC links in operation by 2020

- By 2020, there will be 12 HVDC links in operation
 - Some of the cable routes are located close to or crossing each other
 - 7 of them are VSC-HVDC with ±320 kV
 - In the future, the first offshore MTDC in Europe might emerge by interconnecting these VSCs

Closer look at the North Sea region

HVDC links in operation by 2020

- At a later stage,
 COBRAcable is planned to be operated as MTDC system
 - Hosting additional converter(s) along its cable
 - How to prepareCOBRAcable for future expansion?

What?

- Joint research project between Aalborg University and Delft University of Technology
 - Executed in cooperation with Energinet.dk (Denmark) and TenneT TSO
 B.V (the Netherlands) under the COBRAcable project and co-financed
 by the European Commission under the European Energy Program for Recovery.

Objective?

- Provide guidelines for future connections of converter(s) to the existing COBRAcable
 - Possible case is depicted on the left
 - "Plug & play" principle
 - only allow to adapt the existing control and protective devices, not replace

How?

Publications

ENERGINET DK

Published

- 1. R. Irnawan, F. F. da Silva, C. L. Bak, and T. C. Bregnhøj, "An initial topology of multi-terminal HVDC transmission system in Europe: A case study of the North-Sea region," in 2016 IEEE International Energy Conference (ENERGYCON), Leuven, Belgium, Apr 2016
- 2. —, "A categorization of converter station controllers within multi-terminal DC transmission systems," in 2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D), Dallas, TX, May 2016
- 3. —,"DC power flow control for radial offshore multi-terminal HVDC transmission system by considering steady-state DC voltage operation range," in *The 13th IET international conference on AC and DC Power Transmission*, Manchester, UK, Feb 2017
- 4. —, "Evaluation of half-bridge modular multilevel converter model for VSC-HVDC transient stability studies," in *The 13th IET international conference on AC and DC Power Transmission*, Manchester, UK, Feb 2017

Publications

Submitted

1. R. Irnawan, F. F. da Silva, C. L. Bak, and T. C. Bregnhøj, "Steady-state operational range evolution from a two-terminal to a multiterminal HVDC transmission system," in 2017 CIGRE Symposium, Dublin, Ireland, May 2017

Further information:

www.cobracable.et.aau.dk

Thank you!!!

