Harmonics in Grid-Connected Converters: challenges and cost-effective opportunities in ASD systems

POOYA DAVARI PDA@ET.AAU.DK 20 OCTOBER 2016

WWW.NHTD.ET.AAU.DK

Innovationsfonden

New Harmonic Reduction Techniques for Motor Drives (NHTD)

NHTD has two work-packages based on the harmonic mitigation techniques and solutions as follows:

- **1-** *Single Drive Systems*
- 2- Multi Drive Systems

MAY 2014 → APRIL 2017

NHTD Team

Outline

Introduction (three-phase diode front-end)
 Electronic Inductor (EI) Concept
 Proposed Selective Harmonic Mitigation
 Multi-Drive Systems
 Experimental Results
 Conclusion

HING NEW GROUND

3

Introduction

Three-Phase Diode _____ Front-End System

HUNEW GROUND

PRIBORG UNI

4

Typical ASD System

Passive Filtering Solution

HUN NEW GROUN

5

- AC or DC side passive filtering (inductor): simple and effective to some extent. **But** they are bulky, costly, causes resonance, worsen system dynamic, and etc.
- Active harmonic mitigation solutions have been introduced to improve the input current quality. But most of them are complex, costly and reduce system efficiency.

Typical ASD System

Three-Phase Diode Rectifier Passive Filtering Challenges

HNG NEW GROUND

6

Performance of three-phase diode rectification using dc-side passive filtering: (a) effect of loading condition, (b) corresponding power factor λ and input current THD at different power levels, (c) effect of dc-link inductor size.

Typical ASD System

Three-Phase Diode Rectifier Passive Filtering Challenges

HUNG NEW GROUND

PALBORG

7

Typical annual loading profile of adjustable speed drive applications: (a) water pump, (b) cooling tower.

Electronic Inductor Concept

Basic Idea

HUNC NEW GROUND

PLOORG UNIT

7

8

Electronic Inductor Technique

Basic Concept

50

40 30 20

> 10 0

> > 1 5 7

11 13

Harmonic No.

17 19 23 25 29 31 35 37

WHING NEW GROUND

n

9

- *Emulating the behavior of an ideal infinite inductor*
- THD_i and Power Factor (λ) independent of the load profile.
- *Controlling dc-link* (u_{dc}) *.*

Electronic Inductor Technique

No major modification is imposed to the original system!

RING UNIVERSIT

Electronic Inductor Concept

Load Profile

HUNG NEW GROU

11

Implementation of electronic inductor using a boost dc-dc converter topology in a three-phase diode rectifier: (a) circuit schematic, (b) corresponding input current waveform (i_a) at different power levels. (Simulation parameters: rms line-to-line voltage $U_{g,LL,rms}$ = 400 V, grid frequency f_g = 50 Hz, grid impedance L_g = 0.18 mH, R_g = 0.1 Ω , rated power $P_{o,max}$ = 7.5 kW, U_{dc} = 700V, f_{sw} = 40 kHz, dc-link capacitance C_{dc} = 470 µF, and dc-link inductance L_{dc0} = 2 mH.)

Experimental Setup

HUNG NEW GROUND

Pro AG UNIVERSI

7

12

System Specifications

U _{g,LL,rms}	$f_{ m g}$	$L_{ m g}$, $R_{ m g}$	P _{omax} (100%)	U _{dc}	$f_{ m sw}$	L _{dc0}	C _{dc}
400 V	50 Hz	0.18mH , 0.1 Ω	7.5 kW	700 Vdc	20 kHz	1 mH	470 μF

Employed components

Module	Part-Number
Three-phase diode rectifier	SKD30
IGBT-diode	SK60GAL125
IGBT gate drive	Skyper 32-pro
Controller	TMS320F28335

Experimental Results

Original Drive (Passive Filter)

THD_i = 48.7%, λ = 0.89 *L* = 2.5mH

 $P_o = 5kW$ $U_{dc} = 534V$

THD_i = 67.6%, λ = 0.81 *L* = 2.5mH

 $P_o = 3kW$ $U_{dc} = 534V$

EI (flat current modulation)

THD_i = 28%, λ = 0.95 *L* = 1mH, *f*_{sw} = 20 kHz

 $P_o = 3kW$ $U_{dc} = 700V$

Improving Efficiency

Adjustable Switching **Frequency Scheme**

HING NEW GROUND

TRORG UN

7

14

Adjustable Switching Frequency

WHO NEW GROUND

15

[1] P. Davari, Y. Yang, F. Zare, and F. Blaabjerg, "Energy Saving in Three-Phase Diode Rectifiers using Adjustable Switching Frequency Modulation Scheme," *EPE-2016*.

Adjustable Switching Frequency

ASFM Using strategy efficiency improves from 315W losses to 173W losses (95.8% vs 97.7%)

System Specs:

Parameter	Symbol	Value
Grid phase voltage	V _{abc}	230 Vrms
Grid frequency	f_{g}	50 Hz
Grid impedance	$L_{ m g},R_{ m g}$	0.18 mH, 0.1 Ω
DC-link inductor	$L_{\rm dc-p}, L_{\rm dc}$	2.5 mH, 2 mH
DC-link capacitor	$C_{\rm dc}$	470 μF
DC-link voltage	$U_{ m dc-p}$, $U_{ m dc}$	≈ 534V, 700 V
Rate power	$P_{o,max}(100\%)$	7.5 kW

T: Power switch (Transistor)

P

HNG NEW GROUND 16 FRORG UNIVERSIT

Using WBG Devices

 $L_{dc} = 2 \text{ mH}$

 $L_{\rm dc} = 1 \text{ mH}$

Applying SiC power devices reduces the size of magnetic components and losses (131 W vs 173 W)

Pulse Pattern Modulation

HING NEW GROUND

Pro RG UNIVERSI

18

Pulse Pattern Modulation

[1] P. Davari, F. Zare, and F. Blaabjerg, "Pulse pattern modulated strategy for harmonic current components reduction in three-phase ac-dc converters," *IEEE Trans. Ind. Appl.*, vol. 52, no. 4, pp. 3182-3192, July-Aug. 2016.

Pulse Pattern Modulation

$$2\beta + \theta = 60$$
$$30^{\circ} < \alpha_1 < 90^{\circ}, \alpha_2 = 120^{\circ} - \alpha_1$$

WHING NEW GROUND

20

Adding or subtracting phasedisplaced current levels

$$i_{1} = \frac{4}{\pi} [I_{dc1} \cos(30) + I_{dc2} \cos(\alpha_{1}) - I_{dc2} \cos(\alpha_{2})]$$

$$i_{k} = \frac{4}{k\pi} [I_{dc1} \cos(k30) + I_{dc2} \cos(k\alpha_{1}) - I_{dc2} \cos(k\alpha_{2})] = 0$$

$$i_{m} = \frac{4}{m\pi} [I_{dc1} \cos(m30) + I_{dc2} \cos(m\alpha_{1}) - I_{dc2} \cos(m\alpha_{2})] = 0$$

[1] P. Davari, F. Zare, and F. Blaabjerg, "Pulse pattern modulated strategy for harmonic current components reduction in three-phase ac-dc converters," IEEE Trans. Ind. Appl., vol. 52, no. 4, pp. 3182-3192, July-Aug. 2016.

Pulse Pattern Modulation

Optimization

 $\begin{cases} Obj_{1} = M_{a} - |i_{g}(1)| \le L_{1} \\ Obj_{n} = \frac{|i_{g}(n)|}{|i_{g}(1)|} \le L_{n} \\ Objective Function \\ Weighting Factor \\ Where n = 6k \pm 1 \text{ with } k \text{ being } 1, 2, 3, \dots \end{cases}$

NEW GROU

21

$$\alpha_0 < \alpha_1 < \alpha_2 < \cdots < \alpha_m < \alpha_0 + \frac{\pi}{3}$$

Instead of fully nullifying the distortions, the harmonics could be reduced to acceptable levels by adding suitable constraints (L_n).

Here, F_{obj} is formed based on a squared error with more flexibility by adding constant weight values (w_n) to each squared error function

[1] P. Davari, F. Zare, and F. Blaabjerg, "Pulse pattern modulated strategy for harmonic current components reduction in three-phase ac-dc converters," *IEEE Trans. Ind. Appl.*, vol. 52, no. 4, pp. 3182-3192, July-Aug. 2016.

Experimental Setup

HUNG NEW GROUND

22

Experimental Setup

Synthesis of the modulation signal

HING NEW GROUND

Pro RG UNIVERSI

23

$$\begin{aligned} \alpha_{1} < \alpha_{11} : & \alpha_{1} > \alpha_{11} : \\ & \left\{ \begin{aligned} & if(|\sin(3\omega_{0}t)| > \sin(3\beta)) \\ & i_{M} = I_{dc1} + I_{dc2} \\ & else \\ & i_{M} = I_{dc1} \end{aligned} \right. \\ & \left\{ \begin{aligned} & if(|\sin(3\omega_{0}t)| > \sin(3\beta)) \\ & i_{M} = I_{dc1} - I_{dc2} \\ & else \\ & i_{M} = I_{dc1} \end{aligned} \right. \\ & \left\{ \begin{aligned} & if(|\sin(3\omega_{0}t)| > \sin(3\beta)) \\ & i_{M} = I_{dc1} - I_{dc2} \\ & else \\ & i_{M} = I_{dc1} \end{aligned} \right.$$

Experimental Results

■ Harmonic Elimination [5th, 13th]

HUNG NEW GROUND

Pro AG UNIVERSI

24

■ Harmonic Elimination [7th and 13th]

$$P_o = 5 kW$$
 $U_{dc} = 700V$

$$Idc_1 = 1$$
, $Idc_2 = 0.618$, $\alpha_1 = 42^\circ$

5 th 7 th 11 th 13 th	n:300V/div \$10A/div 10ms/div
23.4%	THDi = 47.7% 1600 mA/div $\lambda \approx 0.89$
4.7%	FFT of the grid current (<i>i</i> _a)

 $P_o = 5 kW$ $U_{dc} = 700V$

: :

$$Idc_1 = 1$$
, $Idc_2 = 0.653$, $\alpha_1 = 70^\circ$

Harmonic Mitigation	Harmonic Distribution and THD _i (%)					
Strategy	i _a (5)/ i _a (1)	i _a (7)/ i _a (1)	$i_a(11)/i_a(1)$	i _a (13)/ i _a (1)	THD _i	
7 th and 13 th harmonic cancellation	31.2	2.3	9.5	1	34	
5 th , 13 th harmonic cancellation	4.7	37.5	23.4	4	47.7	
Conventional method (square wave)	20	14	8.7	7.3	28.6	

NEW GROUND

ProRG UNIVERSIT

25

Basic Concept

In many applications it is a common practice to employ parallel connected drive units. In this situation the application demand is met using multiple modestly sized motor units rather than one single large unit.

HUN NEW GROUNS

26

• Generating staircase total input current by proper combination

Zg SCR Vrec s Va $V_{\rm os}$ dc R D $C_{\rm dc}$ L_{dc} R_{11} R_{q} Grid V_{rec_d} /od DC-DC de R_{L2} C_{dc} **Diode Rectifier** 0.96 PF = 0.928 Power Factor (PF) 0.92 PF = 0.952 0.88 0.84 0.8 10 20 30 40 50 60

Firing angle $\alpha_f(^\circ)$

[1] Y. Yang, P. Davari, F. Zare, and F. Blaabjerg, "A dc-link modulation scheme with phase-shifted current control for harmonic cancellation in multi-drive applications," IEEE Trans. Power Electron., vol. 31, no. 3, pp. 1837-1840, Mar. 2016.

0

Phase-shifted Flat Current Control

HUN NEW GROUN

28

The new current modulation technique is applied to each DC-DC converter in order to further improve the current quality. However, it requires PLL for synchronization purpose.

[1] P. Davari, Y. Yang, F. Zare, and F. Blaabjerg, "A multi-pulse pattern modulation scheme for harmonic mitigation in three-phase multi-motor drives," *IEEE J. Emerg. Sel. Top. Power Electron.*, vol. 4, no. 1, pp. 174-185, Mar. 2016.

[2] P. Davari, Y. Yang, F. Zare, and F. Blaabjerg, "Predictive pulse pattern current modulation scheme for harmonic reduction in three-phase multi-drive systems", *IEEE Trans. Ind. Electron*, vol. 63, no. 9, pp. 5932-5942, Sept. 2016.

Pulse pattern current modulation ($\alpha_f \neq 0^\circ$)

Implemented Setup

Experimental Results (phase shift control)

 $P_{SCR} = 3 \text{ kW}, P_{DR} = 3.63 \text{kW}, U_{dc} = 700 \text{V}$

THD_i \approx 15.8%, λ = 0.95

 $P_{SCR} = 3 \text{ kW}, P_{DR} = 3.36 \text{kW}, U_{dc} = 700 \text{V}$

Experimental Results (current modulation)

THD_i \approx 8.6%, λ = 0.94

 $P_{SCR} = 3 \text{ kW}, P_{DR} = 3.65 \text{ kW}, U_{dc} = 700 \text{ V}$

PORG UNIN

Extending number of the units (phase shift control)

ORG UNIN

Extending number of the units (current modulation)

Experimental Setup

HUNG NEW GROUND

PLOAG UNIVERSI

7

35

Conclusion

b The EI technique can significantly improve the THD_i, λ and stable DC link

NEW GRO,

- The proposed pulse pattern modulation can eliminate low order harmonics
- With multi-drive configuration, the EI technique can further reduce the THD_i
- The EI technique can maintain the system performance under non-ideal operation conditions (e.g., unbalanced grid)
- The efficiency of EI technique can be significantly improved by employing WBG devices, alternative topologies and smart control techniques

Thank You

HUNG NEW GROUND

PRORG UN

37

Pooya Davari pda@et.aau.dk

http://www.nhtd.et.aau.dk