

Mobility, Logistics and Automotive Technology Research Centre

Next Generation Battery Technologies & Thermal Management for BEVs

Where Technology meets Society, Where Mobility meets Technology, Where Logistics meets Sustainability

Electrolyte: organic solvents + LiPF₆ Separator: single or multilayer polymer sheets, typically polyolefin

Source: VUB

- New approach
- Combination of high voltage spinel & Si-based anode
- > High voltage electrolyte is needed: 4.7V
- Energy density >270 Wh/kg
- Technical issues:
 - Electrolyte stability; Si expansion
 - High voltage spinel at higher voltages and temperatures;
 - > Lifetime
 - Power performances
- > 5 to 10 years

electrolyte anode cathode separator

Source: www.fivevb.eu

- Energy density: 280-350 Wh/kg
- Solution for combination with high voltage electrodes
- > Safe
- Easy to integrate

Source: Toyota

Roadmap EU

		Current (2014/ 2015)	2020	*2030		
Perf	ormance targets for automotive a	pplications unless o	therwise indicated			
1	Gravimetric energy density [Wh/kg]					
	pack level	85-135	235	> 250		
	cell level	90-235	350	> 400		
2	Volumetric energy density [Wh/l]					
	pack level	95-220	500	> 500		
	cell level	200-630	750	> 750		
3	Gravimetric power density [W/kg]					
	pack level	330-400	470	> 470		
	cell level		700	> 700		
4	Volumetric power density [W/l]					
	pack level	350-550	1.000	> 1.000		
	**cell level		1.500	> 1.500		
5	Fast recharge time [min] (70-80% ΔSOC)	30	22	12		
6	Battery life time (at normal ambient temperature)					
	Cycle life for BEV*** to 80% DOD [cycles]		1.000	2000		
	Cycle life for Stationary to 80% DOD [cycles]	1000-3000	3000-5000	10000		
	Calendar life [years]	8-10	15	20		

*: Post-Lithium ion technologies are assumed relevant in this time frame

**: May also be relevant to stationary applications

*** Cycle life for PHEV must be bigger

Source: EC, SET PLAN ACTION POINT 7

Battery cost

As of 2018, battery cost reduction due to a higher energy density materials (e.g. NMC 622), leads to competitive prices of xEVs. By 2020, system costs of 100 EUR/kWh will be met.

1) Assumption: Long-range BEV with 90kWh battery, automotive system cost structure: ~80% cell, ~20% system components

Source: P3

Battery cost

Industrial learning effects also achievable in submarkets by doubling the production volumes. Particularly powerful and cost-efficient lithium-ion cells open up new niche markets.

Source: P3

Battery cost

First learning curve effects and constant production improvements will be transferred to new sites in Eastern Europe with ongoing cost reduction. (Labor, energy and space costs, etc.)

Source: P3

Opel Ampera

Nissan Leaf

- # mono blocks
- > few cells in series per mono block
- > several stacks in parallel for having higher capacity
- e.g. Nissan Leaf: 192 cells, 48 mono blocks, 2 stacks in parallel

F. Active Cooling and Heating - Liquid Circulation

Mercedes-Benz S400 BlueHYBRID

Direct refrigerant-based cooling with cooling plate, Mercedes-Benz S400 BlueHYBRID

Source: Daimler

Battery cooling system by Behr using primary and secondary cooling circuit

Source: Daimler

Drawback existing solutions

	BMW i3	BMW i8	E-Golf	Tesla Model S
Total weight battery system (kg)	283	98	3 <mark>1</mark> 8	600
Weight (excl. cells) (kg)	58	38	191	270
Potential weight saving of the battery system (%)	10	25	20	25

Existing battery thermal management solutions

Existing battery thermal management solutions

Test at 100A

m

Cost share

22 kWh EV battery pack

Drawback existing solutions

- Developed for dedicated battery cells and application
- > Complex
- Costly
- > Heavy

CHARGING TIME IN COMPARISON (80% CUSTOMER SOC/400 KM)

					Cuarging rune municar p
0 kW tate of the art	400 volts				Infrastructure
DO kW	400 volts		40 minutes		Plug/Battery cell
50 kW	400 volts	:	29 minutes		Plug (350 A)
20 kW	800 volts	19 minutes			Battery cell
r get harging = Fueling"	400 volts	FURTHE	ER POTENTIAL FOR	REDUCTION AT 80	10 V
	0	20	40	60	80 minutes

Source: Porsche

Allow Bloothe

- > Modular
- > Scalable
- Energy efficient
- Designed for fast charging
- > Not heavy

22.10

21.05

20.00

Source: Allcell Technology

Source: VUB

- >High thermal performance, due to its large interstitial surface area up to 2500m²/m³
- > High porosity makes it a very lightweight material
- Mechanical robustness
- Up to 15% lighter battery system compared to SoA systems

Test at 100A

UNIVERSITEIT

BRUSSEL

M

> Test at 100A

Liquid-cooling plate.

12 cells module design with PCM (Paraffin + Al-foam) and liquid cooling.

Possible collaboration topics

- Next generation battery systems (incl. thermal management) for BEVs
 - > For existing battery technologies
 - > Next generation battery technologies
 - Modular & scalable
- Tailored made solutions
- Reduction of cost, weight and volume
- Thermal management at complete vehicle level
- Thermal management solutions for inverters, e-motors, ...

Prof. Noshin OmarPhone+32 2 629 28 01Mobile+32 486 99 74 51Emailnoshomar@vub.acbeOfficeBuilding Z

THANK YOU FOR YOUR ATTENTION

Pleinlaan 2, 1050 Brussels, Belgium mobi.vub.ac.be twitter.com/MOBI_VUB

