MMC CAPACITOR VOLTAGE BALANCING IN NEAREST LEVEL CONTROL

Mattia Ricco

Aalborg University, Energy Technology Department, Pontoppidanstæde 111, 9000 Aalborg, Denmark
Outline

➢ Introduction

➢ Sorting Methods for NLC

➢ Proposed Solutions:
 • Sorting Networks
 • Capacitor Voltage Mapping Strategy

➢ Conclusions
Structure of MMC

Advantages:
• Reduced harmonics
• High modularity
• Scalability
• Low switching losses
• High reliability
• Fault tolerance

Challenges:
• Circulating Current Control
• Loss balance among SMs
• Capacitor Voltage Balancing
• Complex control
Control scheme of MMC

Maximum Sampling Period T_s:

$$T_s = \frac{1}{\pi N f_1}$$

N = number of SMs
f_1 = 50 Hz

Given data:

$T_{ex} \leq T_s$

Graph showing maximum T_s vs. number of SMs N. The graph decreases as N increases, indicating the limitation on T_s. The data from 14-06-2017.
Outline

- Introduction
- Sorting Methods for NLC
- Proposed Solutions:
 - Sorting Networks
 - Capacitor Voltage Mapping Strategy
- Conclusions
Sorting Methods for NLC

Bubble Sorting Algorithm

Advantage:
- Easy to implement.

Drawbacks:
- The execution time is not fixed and it depends on the input list.
- The execution time increases when N grows.

Max/Min Approach

Advantage:
- Easy to implement.
- The sorting method is avoided.
- Less execution time than Bubble sorting algorithm.

Drawbacks:
- If more than one SM has to be inserted, for example during faults, the max/min method needs more sampling periods to insert the required SMs. This affects the control dynamic.
Sorting Methods for NLC

Tolerance Band

Advantage:
- Reduced switching frequency.

Drawbacks:
- A sorting method is required.
Outline

- Introduction
- Sorting Methods for NLC
- Proposed Solutions:
 - Sorting Networks
 - Capacitor Voltage Mapping Strategy
- Conclusions
Sorting Networks

- The Sorting Networks are typically good solutions for FPGA:
 - Even-Odd Sorting Network
 - Bitonic Sorting Network
- They are faster than the sorting algorithms due to the parallel construction.

Bitonic Sorting Networks with $N = 8$

Compare & Swap Operator

Sorting Networks

- The Sorting Networks are typically good solutions for FPGA:
 - Even-Odd Sorting Network
 - Bitonic Sorting Network
- They are faster than the sorting algorithms due to the parallel construction.

Outline

- Introduction
- Sorting Methods for NLC
- Proposed Solutions:
 - Sorting Networks
 - Capacitor Voltage Mapping Strategy
- Conclusions
Capacitor Voltage Mapping Strategy

$V_{C_{\text{min}}}$ and $V_{C_{\text{max}}}$ are derived from the design parameters.
Capacitor Voltage Mapping Strategy

\[\Delta V = \frac{V_{C_{\text{max}}} - V_{C_{\text{min}}}}{M} \]
Capacitor Voltage Mapping Strategy

![Diagram of capacitor voltage mapping strategy]

- $V_{C_{max}}$
- $V_{C_{min}}$
- Memory Array
- Map
- $V_{C_{min}}$ / $ΔV$
- V_{C_i}
- ADD_{R_i}
- round

14-06-2017
Capacitor Voltage Mapping Strategy

- M FIFO Memory → Voltage Resolution
- Memory depth equal to N
- The position is stored in the cell

\[
V_{C_{\text{min}}} = 14 \text{ V} \\
\Delta V = 0.5 \text{ V}
\]

Inside a voltage range the capacitor voltage values are considered to be identical
Simulation Results

Table: MMC parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC-link Voltage V_{DC}</td>
<td>200 kV</td>
</tr>
<tr>
<td>SM Capacitor C</td>
<td>36 µF</td>
</tr>
<tr>
<td>Arm Inductance L_{arm}</td>
<td>50 mH</td>
</tr>
<tr>
<td>Arm Resistance R_{arm}</td>
<td>1 Ω</td>
</tr>
<tr>
<td>Number of SM N</td>
<td>16</td>
</tr>
<tr>
<td>Sampling frequency f_s</td>
<td>10 kHz</td>
</tr>
</tbody>
</table>

Table: grid parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid frequency f_{grid}</td>
<td>50 Hz</td>
</tr>
<tr>
<td>Grid Voltage V_{grid}</td>
<td>121.2 kV</td>
</tr>
<tr>
<td>Grid Inductance L_{grid}</td>
<td>16.7 mH</td>
</tr>
<tr>
<td>Grid Resistance R_{grid}</td>
<td>0.52 Ω</td>
</tr>
</tbody>
</table>
HIL Results

Capacitor voltages

Circulating current

Output current

Total execution time

Switching

BSA max/min MCVB in PS MCVB in PL

14-06-2017
Outline

- Introduction
- Sorting Methods for NLC
- Proposed Solutions:
 - Sorting Networks
 - Capacitor Voltage Mapping Strategy
- Conclusions
Conclusions

- Two solutions have been proposed for the capacitor voltage balancing algorithm:
 - Sorting Networks
 - Capacitor Voltage Mapping Strategy

- The simulation results for the CVMS have been shown.

- The HIL results have also been presented.
Thank you for your Attention

E-mail: mri@et.aau.dk