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ABSTRACT

For Discrete Displacement Cylinder (DDC) drives the control task lies in choosing
force level. Hence, which force level to apply and thereby which pressure level each
cylinder chambers shall be connected to. The DDC system is inherently a force sys-
tem why often a force reference is generated by a tracking controller and translated
into a discrete force level in a Force Shifting Algorithm (FSA). In the current paper
the tracking controller and the FSA are combined in a Model Predictive Control
algorithm solving the tracking problem while minimizing the energy use. Two MPC
algorithms are investigated and compared to a PID like tracking controller combined
with a FSA. The results indicate that the energy efficiency of position tracking DDC
systems may be improved significantly by using the MPC algorithm.
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1 INSTRUCTION

Digital hydraulics as a technology is claimed to enable energy efficient and robust
systems compared to classical fluid power systems. The use of on/off valves al-
lows a flexible system architecture where control volume pressures are controlled
individually and not two and two depending on the same spool valve.

Three main categories within Digital fluid powered cylinder-valve drives are; sys-
tems based on Digital Flow Control Unit, systems based on Discrete Displacement
Cylinder or systems based on Pulse Width Modulated valves. All of which have sys-
tem architectural advantages when compared to traditional 4/3 way valve-cylinder
drives with respect to energy efficiency.

This paper focuses on a Discrete Displacement Cylinder (DDC) i.e. is a cylinder
with a number of working chambers which may be connected to a number of fixed
pressure level supply lines. These systems are sometimes referred to as secondary
control cylinders. As the cylinder chambers are connected to the pressure lines
through ”large” on/off valves throttling losses are small and indeed the throttling is
not used for control. The DDC is a force system with a discrete number of applicable
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force levels generated by connecting the cylinder chambers to the fixed pressure level
supply lines. A sketch of such system is seen in Fig. 1.

Earlier research have investigated the system architecture and component control
and requirements, see e.g. [1, 2, 3, 4, 5, 6]. In [3] energy losses in connection to force
shifts were investigated.

The current work investigates the control of DDC’s with focus on the energy
usages. Hence, a control algorithm performing an energy efficient position tracking
is developed. The discrete nature of the DDC system induces many solutions for the
same tracking problem. In [1] the choice to shift force or not and which to shift to
is made based on minimising a cost function weighing the force error and if a valve
change is made. In [2] a cost function weighing the force error against a weighted
chamber pressure change is used, i.e. the idea was to limit the energy loss due to
force shifting. In both [1, 2] the force reference is generated from a classical linear
tracking controller and hence, the force reference is continuous and do not include
knowledge of the discrete force system.

In the current paper, a Model Predictive Controller will be designed for energy
optimal tracking control. Hence, the tracking control algorithm includes knowledge
of the discrete force system. Two MPC strategies will be developed and compared
by simulations. Furthermore, a classical PID tracking controller will be designed as
benchmark.

In the next section the case system will be presented and modelled, furthermore
the MPC structure and objective function will be introduced as well as the PID
controller. The section ends by presenting the test trajectory for the simulation
model. In the third section the simulation results for the MPC and PID controllers
are investigated. Also, the influence of the prediction horizon and step time will
be shown. The section concludes by comparing the two MPC strategies with the
PID strategy. In the Discussion section the feasibility of DDC in tracking systems is
considered in terms of force shifting time and force resolution in comparison to the
load system. Furthermore, the required model complexity for the MPC algorithm
is discussed as well as the MPC calculation time.

2 METHOD

The feasibility of MPC for discrete fluid power secondary control is in this paper
investigated in a simulation study. Hence, a large inertia system is driven with a
discrete fluid power force system. The DDC system consists of a three chamber
cylinder connected to three pressure lines through nine on/off valves. A MPC strat-
egy is setup to fulfil the tracking requirement while keeping the energy usage low.
The derived MPC strategy will be compared to traditional PID feedback tracking
control where the choice of discrete force level is done by a Force Shifting Algorithm.

2.1 System Model

The load system is a simple mass-spring-damper system as shown in figure 1. The
DDC system used is the one investigated in [7, 8]. As seen in figure 1 it consists
of a three chamber cylinder which through on/off valves may be connected to three
pressure lines. The pressures in the supply lines are assumed constant.
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Figure 1: DDC force system and the load system.

The dynamic equation for the load system reads:

Mẍc(t) + Bẋc(t) +Kxc(t) = fc(t) (1)

where the force from the DDC is fc(t). The actuator model consists of three con-
tinuity equation on the format (3), one for each cylinder chamber and an orifice
equation for each on/off valve. [9].

fc(t) = Σ3
i=1Aip1(t) (2)

ṗi(t) =
βi

Vi(xc)
(Qi(t) + Aiẋc(t)) (3)

Qi(t) = Σ3
j=1kvui,j

√

|pL,j − pi|sign(pL,j − pi) (4)

pL,j is the pressure in the j’th supply line and ui,j is the valve state for the valve
connecting the i’th cylinder chamber with the j’th supply line. kv is the valve
coefficient for the on/off valves. The hose connection from the valve manifold to the
cylinder chambers are assumed short compared to the system dynamics and hence
left unmodelled.

With the system layout given in Tab. 1 the force vector and the according steady
state positions are given in Fig. 2.

M = 660 · 103 kg A1 = (+)235 cm2 pL.1 = 20 bar
B = 215 · 103 N/s A2 = (−)122 cm2 pL.2 = 100 bar
K = 2513 kN A3 = (−)87 cm2 pL.3 = 180 bar

Table 1: System parameters for the load and the fluid power systems, based on [8].

For each of the applicable forces seen left in Fig. 2 a corresponding piston
position is seen to the right. Hence, the position given in the right plot may be
obtained with a constant force value from the applicable force vector.
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Figure 2: Applicable force vector and according steady state positions.

2.2 Control Strategy

The driving system is by nature a force system. Hence, given a valve input matrix
u the cylinder produces a given force. The output of the controller is therefore a
force reference. The PID like feedback controller will generate a continuous force
reference which must be translated to a discrete force value by a FSA. The MPC is
formulated as an integer problem such it directly chooses one of the available force
levels. In each controller time step, Ts, the MPC algorithm runs an optimisation that
finds a vector of force levels minimising the object function over a given prediction
horizon, TH = TsN . Hence, the MPC finds the force level to be applied into the
future, [F (Ts) F (2Ts) F (3Ts) .. F (NTs)]. The controller however only input F (Ts)
after which a new vector of forces is calculated.

2.2.1 MPC

The tracking problem is solved with two strategies MPC1 and MPC2. Firstly the
tracking error and the energy losses are combined in an objective function (5).
Secondly, the objective function (6) only holds the energy losses while a constraint
on the tracking error is included in (8).

J1 =
W1

TH

(

ΣN
n=1Eβ(n) +

∫ TH

0

Et(t)dt

)

+
1

TH

∫ TH

0

W2ec(t)
2 + ėc(t)

2dt (5)

J2 =
1

TH

(

ΣN
n=1Eβ(n) +

∫ TH

0

Et(t)dt

)

(6)

The energy losses included in the objective functions are losses induced during force
shifting Eβ and throttling losses Et across the on/off valves. The MPC1 algorithm
is tuned using the weighing parameters W1..

The optimal force level in the time horizon TH is k+, i.e. a vector holding the
optimal forces at time t = Tsk for k = 1, 2... N and is found as

k+ = argmin
k∈S

{J1} (7)

k+ = argmin
k∈S

{J2| |ec(t)| < δ} (8)
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for MPC1 and MPC2 respectively. The elements for the solution k+ must belong to
the S which is the set of available forces, here the integers from 1 to 27. Note, that
MPC2 is tuned with the error measure δ contrary to some weighing parameters.

The derivative of the error is included in the objective function as a consequence
of observed instability for a cost function only minimising the error. Proof of stability
for the formulated MPC is not directly addressed in this work, but only handled
through tuning of weight factors W1 and W2.

The model used for the MPC formulation is the dynamic equation of the load
system represented in state space:

ẋ = Acx+ Bcu (9)

yk = Ccx

where the system matrices for the continuous system is:

Ac =

[
0 1

−K
M

−B
M

]

, Bc

[
0
1
M

]

, Cc

[
1 0

]
(10)

Note, that in MPC the input u is discrete in time with constant sample time Ts, i.e.
the input may be seen as a comming from a zero-order hold. A discrete representa-
tion of the system model may be formulated:

xk+1 = Axk + Buk (11)

yk = Cxk

By recursive evaluation of the discrete state space model future system states may
be described by:










xk+1

xk+2

xk+3

...
xk+N










︸ ︷︷ ︸

xk+

=










A

A2

A3

...
AN










︸ ︷︷ ︸

P

xk +










B 0 0 · · · 0
AB B 0 · · · 0
AB AB B · · · 0
...

...
...

. . .
...

AN−1B AN−2B AN−3B · · · B










︸ ︷︷ ︸

H










uk

uk+1

uk+2

...
uk+N−1










︸ ︷︷ ︸

uk+

(12)

The future system output, i.e. the future cylinder position, may be described as:

yk+ = Cxxk+, Cx =










C 0 0 · · · 0
0 C 0 · · · 0
0 0 C · · · 0
...

...
...

. . .
...

0 0 0 · · · C










(13)

The squared error and derivative of error over the time horizon of the objective
function (5) may then be approximated by a static algebraic problem:

∫ TH

0

W2ec(t)
2 + ėc(t)

2dt ≈ (xc,ref+ − Pxk −Huk+)
T
Q (xc,ref+ − Pxk −Huk+) (14)
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where xc,ref+ is a vector containing position and velocity references at time t = kTs

for k = 1, 2 . . . N and Q a diagonal matrix with

[
W2 0
0 1

]

. Two actuator energy

losses are included in the objective functions (5) and (6). The first energy loss is
associated with changing the pressure in the cylinder chambers which is calculated
by:

Eβ =
1

2
∆p2

V

β
(15)

The total shifting loss over the time horizon may then be calculated for both cost
functions:

ΣN
n=1Eβ(n) = ΣN

n=1Σ
3
i=1

1

2
(pi(n)− pi(n− 1))2

V

β
(16)

where pi(n) denotes the pressure in the i’th chamber corresponding to the force level
at step n.

The second loss is the throttling loss in the valve manifold. Which is calculated

by the piston velocity and a loss coefficient kt = Σ3
i=1

A3
i

k2
v,i

. The total throttling loss

during a prediction horizon TH is given by:

∫ TH

0

Et(t)dt ≈ ΣN
k=1|ẋc(k)

3kt| (17)

where ẋc(k) is calculated in the same manner as (13) with C =
[
0 1

]
.

The optimisation problem of both MPC formulations is in this work solved by a
differential evolution algorithm, see e.g. [10].

2.2.2 PID Feedback

The load system plant is the linear second order system given as:

Gp(s) =
Xc(s)

Fc(s)
=

1

Ms2 + Bs+K
(18)

for which a bode plot and a step response are seen in Fig. 3.
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Figure 3: Bode diagram and step response of the load system, Gp(s).
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A PID-like controller is designed for position tracking:

Gc(s) = Kc

(

Kps+
Ki

s
+

Kds

τds+ 1

)

(19)

In the control design phase the force system is approximated by a first order
system resembling the pressure build up in a constant volume through a fixed orifice:

Gf(s) =
Fc(s)

Fc.ref(s)
=

1

τfs+ 1
(20)

The combined actuator and plant then becomes a third order system consisting
of a ”slow” second and a ”faster” first order system. The bode plot of the normalised
system is seen in Fig. 4 (a). The controller designed is seen in Fig. 4 (b).
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Figure 4: (a) Uncontrolled system with force dynamic approximations. (b) The
applied controller. (c) Controlled open loop system. (d) Closed loop step response.

A bode diagram of the open loop controlled system is seen in Fig. 4 (c) and a
closed loop position step response of the controlled system is seen in Fig. 4 (d). The
controller constants employed are given in Tab. 2.

Kc = 40 · 106 Kp = 1 Ki = 1 Kd = 0.5 τd = 0.064

Table 2: Controller constants for (19).
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2.2.3 Force Shifting Algorithm

Using a discrete force system entails that the applied force must be chosen between
the force levels available. Therefore, a translation from the continuous controller
output to force level is required. This translation is conducted with a FSA. The
FSA is developed to weigh the energy loss associated with a given force shift against
the force error:

k = argmin
k∈S

{|fc.ref(t)− Fc(k)|+W4Eβ(k)} (21)

The FSA updates the output reference every Ts. W4 is a tuning parameter left for
trade-off between tracking performance and energy use.

2.3 Test Trajectory

When performing tests of the position controllers a feasible input reference is re-
quired. Hence, the system is tested against a reference with transient changes within
the system limits. The position trajectory is defined as a piece-wise function of 5’th
order polynomials given as:

x(t) = a5t
5 + a4t

4 + a3t
3 + a2t

2 + a1t+ a0 (22)

In this work, the initial and end velocity and accelerations are is set to zero. Hence,
the polynomial constants are depending on the time duration of the movement, the
start and end position and simplifies to the generic constants:

a0 = x(0) a1 = 0 a2 = 0 a3 =
1

2T 3
(20(x(T )− x(0))) (23)

a4 =
1

2T 4
(30(x(0)− x(T ))) a5 =

1

2T 5
(12(x(T )− x(0)))

The total test trajectory used is seen in Fig. 5.
As seen the input trajectory is made such the piston is moved to various positions

and held still. This enables testing of both steady state and transient performance.

3 RESULTS

To see the importance of the parameters Ts and TH for the MPC, results of a pa-
rameter study is shown in Fig. 6. The influence of each parameter is isolated by
setting W1 = 0 such that only the tracking error is minimised. To further simplify
the parameter study the actuator dynamics are neglected, i.e. an ideal discrete force
system is assumed. For the time horizon sweep the step time is set to 0.1s whereas
the time horizon is set to 1s for the time step sweep. The performance is evaluated
on the mean squared error and the mean used power given in respectively (24) and
(25).

emse =
1

T

∫ T

0

(xc,ref(t)− xc(t))
2dt (24)

Pused =
1

T

∫ T

0

Σ3
j=1Σ

3
i=1Qi,j(t)pL,jdt (25)
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Figure 5: Plot of the input reference trajectory for the cylinder position.
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Figure 6: Energy and mean squared error for various time step and horizon length.

Where Qi,j is the flow from the i’th cylinder chamber to the j’th supply line.

From Fig. 6(a) it may be seen that the mean squared tracking error decreases
with an increasing time horizon of the MPC. Increasing the time horizon above
approximately 0.5s does not result in a lower mean squared tracking error.

In Fig. 6(b) it is shown that the mean squared tracking error increases with
an increasing step time of the MPC. In addition it may be seen that the consumed
energy over the trajectory decreases with the increasing step time of the MPC due
to fewer force shifts.

In Fig. 7(a) a parameter study of the weight, W1, in (5) is shown. As seen
the used energy decreases with the increase in weight on the used energy while the
mean squared tracking error increases. In Fig. 7(b) a study of the maximum allowed
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Figure 7: Energy and mean squared error with various weighing parameters and
allowed error on MPC1 and MPC2 respectively.

tracking error of (6) is shown. Tracking error is seen to increases with the allowed
error while the energy loss decreases.

In Fig. 8 the weight on the energy loss in the FSA for the PID controller is
varied. The allowed shifting time is chosen to 50ms due to the actuator dynamics.
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Figure 8: Energy and mean squared error for PID with various weights on energy
loss.

As seen the used energy decreases with the increased weighing while the mean
squared tracking error increases. To compare the two MPC formulations given by
(5) and (6) and the PID controller (19) each control strategy is tuned in order to
meet a set criteria of maximum 3mm mean squared error over the trajectory. Fig.
9 shows the results when using the tuned controllers.

As seen both MPC formulations consume less energy compared to the PID con-
troller. In Tab. 3 the controllers in Fig. 9 are compared along with controllers
with different weightings. The time horizon and step time is chosen as 0.5s and 0.1s
respectively for all MPC formulations.
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Figure 9: Comparison of position tracking results the developed controllers.

W1 W4 δ Eused erms emax Nshift

MPC1 0 - - 10.40kW 0.22mm 1.2mm 201
MPC∗

1 1e-5 - - 1.22kW 2.73mm 3.8mm 71
MPC1 5e-5 - - 0.86kW 12.75mm 9.3mm 42
MPC2 - - 1mm 2.43kW 0.35mm 1.4mm 138
MPC∗

2 - - 3mm 1.42kW 2.69mm 3.3mm 73
MPC2 - - 5mm 1.07kW 7.67mm 5.5mm 52
PID - 0 - 24.05kW 2.62mm 3.2mm 496
PID∗ - 75 - 13.86kW 2.84mm 3.9mm 439
PID - 180 - 11.34kW 3.78mm 5.7mm 411

Table 3: Comparison of MPC1(5), MPC2(6) and PID (19) with different weightings.
The ∗ marked are the ones shown in Fig. 9.

4 DISCUSSION

The obtainable tracking precision is largely dependent on the force system configu-
ration and the force system dynamics. The force step size entails the steady state
position step, while a position value between the steady state values is obtained by
modulating an actuator force between two force levels. During force modulation the
time between force shifts dictates the position ripple which inevitably will appear
when pulse modulating. Hence, reducing the step time improves the obtainable
tracking precision, however, as seen in Fig. 6 decreasing the time step to improve
the tracking is likely to increase the energy use.

How fast the actual force may change is limited by the pressure shifts in the
individual cylinder chambers.

A final factor to include in choice of time step is the calculation time for the
controller. The PID is very light in calculation time while the MPC is rather heavy
on calculation time. The MPC algorithm performs an optimisation at each time
step, and therefore, the optimisation routine is required to finish within Ts. The
calculation time of the MPC algorithm is significantly dependent on the number
of design variables for the optimisation routine (the combination of time step and
prediction horizon). Furthermore, the complexity of the model used in the MPC
algorithm affects the calculation time. As the current study is solely a simulation
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study calculation time is of less importance. However, the mean calculation time
for one time step optimisation is around 38s and 327s for the two MPC algorithms
shown in Fig. 9.

With the time step and the prediction horizon set the tuning of the MPC al-
gorithms is done by choosing the weighing parameter W1 and the tracking error
measure δ for MPC1 and MPC2 respectively. For MPC1 the weighing parameter
is rather difficult directly to relate to system performance, contrary the δ value for
the MPC2 algorithm is directly associated with the position error. Hence, given a
position tracking demand the MPC2 algorithm is easily tuned to obey the demands
while minimising energy use.

Stability analysis of the MPC algorithms studied is left untreated in this study,
but, as mentioned a velocity error was included in MPC1 to obtain a stable solution.
Future studies should seek to prove stability of the designed algorithms.

Comparing the number of force shifts performed (last column in table 3) it is seen
that the PID controller executes significantly more force shifts and uses a lot more
energy than the MPC algorithms. It was observed that increasing the weighing
parameter W4 further may decrease the energy use, however leading to the PID
algorithm performing almost no force shifts leading to a very poor position tracking.
Improving the energy performance of the PID algorithm should, if required, instead
be accomplished by increasing the step time even though this likewise leads to weaker
position tracking.

For a steady state position reference the required force is a pulse modulation of
two forces, but it is difficult to locate the optimal force trajectory. For example: Let
the position reference be xr which impose a force that is pulse width modulated with

duty cycle 0.4 between forces F3 and F4, with solution f(t) leading to ex a solution

with the same position tracking is obtained by time shifting the PWM signal. Hence,
with the MPC structures applied the optimisation algorithm may have difficulty in
differing various solutions especially for steady state input references.

5 CONCLUSSION

The current feasibility study indicates that MPC may be utilised for energy optimal
tracking control with a discrete displacement cylinder. Bearing in mind that the
study is merely a simulation study it is shown that a MPC algorithm may be designed
for a discrete displacement cylinder such that an energy optimal position tracking
is performed. The study shows that a MPC strategy including the discrete nature
and simple loss models of the actuation system easily outperforms a PID controller
combined with a force shifting algorithm.

Two MPC algorithms resulting in almost equal performance were developed.
The MPC2 algorithm seems more intuitive and simpler to tune. A parameter study
showed that a relatively good performance may be obtained using a relative short
prediction horizon, TH = 0.5s, and sample time, Ts = 0.1s.

In conclusion, a MPC algorithm can be used to improve the energy efficiency
of discrete displacement cylinder drives doing tracking control, if system model
including energy losses may be developed such the optimisation routine can be
executed in due time.
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