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Introduction

Sub-synchronous Oscillation in an Offshore Wind Power Plant

Substation

* 67 SWT-6.0MW turbines, total capacity 402MW |L 0 )

 Stable during all normal operations
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Introduction 5

Small-signal stability of power converter-based Power systems

Frequency-Domain Model (FDM) based Stability Approach

» Admittance/Impedance-based approach

» Nyquist stability criterion

« Easy to understand and use, require less information about the system

« Difficult to reveal the root causes of system instability and therefore limited information for control systems tuning

State-space Representation (SSR) based Stability Approach

» Closed-loop study approach, Eignevalue analysis

Lyapunov StabilityTheory: there is always a stability region around the equilibrium for a stable small-signal linearized system

LTI system is stable if and only if all the eigenvalues of state matrix of closed-loop system are located in Left Half Plane (LHP)

Possibility to reveal the relationship of control states and stability of the system

Require comprehensive information about the control systems and system parameters which are not always easy to obtain

© Siemens Gamesa Renewable Energy A/S Lei Shuai/ SGRE OF TE Pf@ IEEE SIEMENS Gamesa

RENEWABLE ENERGY



State-space Representation Modelling

© Siemens Gamesa Renewa ble Energy A/S Lei Shuai/ SGRE OF TE Pf@ IEEE SIEMENS Gamesa

EEEEEEEEEEEEEEE



State-space Representation Modelling 7

Modelling of Net-side VSC in SSR

» A dual feedback control loops: positive and negative sequence control.

Vb

» Outer loops are active power control and voltage control.

« DQ Synchronous Rotating Frame (SRF) implementation is employed to
mimic the actual design of power converter control.

Ifb

« Small-signal behavior of PLL is included and modelled to precisely replicate
sub-synchronous dynamic of small-signal stability.

 All actual delays including PWM delay, S&H delays, LPFs, Notch fileters are “ iiiiiii
included.

* The Net-side VSC model in DQ SRF has been benchmarked against Full
Order Model in Time Domain (FOM TD). o x To ety
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State-space Representation Modelling

Modelling of AOWPP Grid in SSR

MV Cable HV Cable

Onshore
Transformer

Park
Transformer

Vturb, WTG
Iturb  Transformer

Shunt Reactor
Filter

Supplier’s data are used to construct models of electrical components.

External Grid is modelled as the Thevenion equivalent based on short-circuit capacity provided by TSO.

AOWPP Grid is modelled in grid SRF to conveniently integrate with Net-side VSC DQ SRF model.
PLL ensures the frame alignment between grid SRF and DQ SRF.
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State-space Representation Modelling 9

Integraton of Net-side VSC Model and AOWPP Grid Model

» Both parts are modelled in Matlab as state-space matrix representation (SSR).
* Interconnection interface is defined at LV side of wind turbine transformer.

» A steady state power flow calculator is used to define the operation points based
on inputs as Pref, Vref, Vgrid.

* A complete closed-loop system SSR SRF model is formed for stability analysis.

— Pref —
Pfb, Vfb Verid Vie f

[X] = A[X] + B|Iq,.s
Pref, Vref, Igref, Idref Idref
| > Net-side VSCSSR Model | Igfb, Idfb > AOWPP Grid SSR Model ST
P fb | P ref ]
Vf b Vre f

J ICIfb = C[X] +D IQref
Vqfb, Vdfb Idfb Idref
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Site Oscillation Replication in Simulations

Site Oscillation Replication in Simulations (1/2)

Facts of Site Oscillation

« Contingency opeartion: single exporting-cable operation

« SCR at MV terminal of turbine transformer reduces to 1.2~1.5

» Appx. 60 WTs were in operation

» Sub-synchronous oscillation started to build up when total
power export exceeded 140MW, resulting in each WT

producing appx. 40% of rated power

» The oscillation frequency was around 8.5Hz

Simulation Scenarios -

» Testcase 1: 60WTs, P = 0.4*Pn, Vref = 1.0 p.u.

F os=84Hz
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Site Oscillation Replication in Simulations

Site Oscillation Replication in Simulations (2/2)

Pole-Zero Map of Closed-loop Active Power Control in PV Mode
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Control Tuning for Stabilization of Oscillation

Control Tuning Approach and Robustness Criteria

Control Tuning Approach based on relocation of critical poles

« Rationality: the LTI system stability depends on if and if only all the poles of
state matrix are located in LHP.

» Objective: Relocation of unstable poles back in stable region LHP by tuning
control parameters.

Robustness Criteria

The robustness criteria is measuring the robustness of a system against
external disturbances, expected system changes such as fault level etc.

» Step response overshoot should be less than 35%

» Step response setting time should be less than 1s
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Imaginary Axis (seconds

Control Tuning for Stabilization of Oscillation

System Performance with Optimized Control

A set of optimized control parameters was identified based on above stability approach and robustness criteria

Test case 1: Single exporting-cable, 67WTs, P = 0.5*Pn, Vref = 1.0

Pole-Zero Map of Closed-loop Active Power Control in PV Mode
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Test case 2: Normal operation, 67WTs, P = Pn, Vref = 1.0

Pole-Zero Map of Closed-loop Active Power Control in PV Mode
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Benchmarking in PSCAD

© Siemens Gamesa Renewable Energy A/S Lei Shuai/ SGRE OF TE Pf@ IEEE SIEMENS Gamesa

EEEEEEEEEEEEEEE



Benchmarking in PSCAD

Site Oscillation Replication in PSCAD

* Full-Order-Model PSCAD consists of the mechanical, electrocal
components and corresponding control systems

« PSCAD is able to replicate the site oscillations under similar opeartion
conditions as the Eigenvalue-based SSR stability approach

« PSCAD with optimized control shows the sytem oscilaltions have been

stablized in max. Power production
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Site Validation

Site Validation with Proposed Optimized Control

« The proposed control changes of power converter were applied on site

« Contingency operations were configured once again to verify if the system is stable or not

« Site measurements show the AOWPP is able to run stably with maxim. Production in both contingency operations
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Conclusion 21

Conclusion

* SSR SRF based simulation modelling has successfully replicated a real site sub-synchronous oscillation

« The Eigenvealue-based stability analysis approach has been employed and verified

» The control tuning approach based on relocation of critical poles are developped and applied

* Robustness criteria are proposed to assess system ability against external disturbances and system changes
« Cross-checking in PSCAD was conducted, and very similar results were obtained

 Site validation was carried out to verify the system stability with proposed control changes, and therefore has
verified the validity of modelling approach, control tuning approach
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