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Harmonic Stability - Definitions and Scope
(Inter-) harmonic oscillations induced by control interactions 
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- Re{Ycl}>0: stable, yet underdamped
Abnormal harmonics 

- Re{Ycl}=0: critically stable, zero-damped
Resonance

- Re{Ycl}<0: unstable, negatively-damped
Instability 

[1] X. Wang and F. Blaabjerg, “Harmonic stability in power electronic based power systems: concept, modeling, and analysis,” IEEE Trans. Smart Grid, Early Access, 2018. 



Harmonic Stability - Definitions and Scope
Sideband oscillations and harmonic oscillations[1]
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Harmonic Stability - Mechanism 
Sideband oscillations - frequency coupling nature of DQ-transformation
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- Symmetric oscillation - frequency shift

- Asymmetric oscillaton - frequency coupling
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Harmonic Stability - Mechanism 
Sideband oscillations - asymmetric control system dynamics

Symmetric dynamics

Asymmetric dynamics

DQ-decoupled DQ-coupled

- Asymmetrical control system dynamics lead to frequency-coupling oscillations!
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Harmonic Stability - Mechanism 
Negative damping at the fundamental frequency (dc in the dq-frame)
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- How about the impedance behavior with ac perturbations? Frequency range of negative damping? 
B. Wen, D. Boroyevich, R. Burgos, P. Mattavelli, and Z. Shen,  “Analysis of D-Q small-signal impedance of grid-tied inverters,” IEEE Trans. Power Electron., vol. 31, no. 1, pp. 675-687, Jan. 2016.



Harmonic Stability - Mechanism 
Negative damping with vector current control 
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Harmonic Stability - Mechanism 
Negative damping with PLL
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Harmonic Stability - Mechanism 
Negative damping with PLL
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- 6-paralleled three-phase grid converters 
(50 kVA in total) with LCL-filters 

- Rapid control prototyping platform with 
DS1007 dSPACE systems

- Scalable and reconfigurable for different 
operating scenarios

Lab Tests @ AAU
AC (400 V) Distribution Grid 



Three-Converter Interactions 
VCC with LCL-Filters

#1 current

Grid voltage 

#2 current

#3 current 



Three-Converter Interactions 
PLL with different Short-Circuit Ratio (SCR) of the grid

SCR = 8.4 SCR = 4.2

#1 current

Grid voltage 

#2 current

#3 current 



VSC-HVDC + Offshore Wind

Filter resonance in the offshore 
HVDC converter station  

Electrification of railways

Locomotives is out of control 
because of abnormal harmonics

MMC-HVDC Transmission

Transformer resonance with 
current control of MMC

©CSG

Real-Life Challenges
Control interactions of multiple converters



Harmonic Stability - Modeling of Power Converters
Small-signal models for harmonic analysis and control design 

1970

1985

1997

2000

2003 2014
Persson [7] - thyristor HVDC
Frequency response analysis 
Describing Function with single 
sinusoidal inputs

For control design

Sakui and Fujita [8] - thyristor
rectifier, Switching Function 
model w/o firing angle 
variation considered

For harmonic analysis  

Mattavelli, Verghese, Stankovic
[11] - thyristor FACTS devices
Dynamic Phasor with time-variant 
Fourier coefficients 

For control design 

Wang, Harnefors, Blaabjerg [18] -
Unified Impedance Model from 
dq-frame to αβ-frame, 2nd-order
Harmonic Transfer Matrix

For control design 

Cespedes and Sun [17] - stability 
effect of PLL on PWM converter
Harmonic Balance, Multi-Input 
Describing Functions 

For control design 

Rico, Madrigal, Acha [13] -
STATCOM with phase angle 
control, Extended Harmonic 
Domain (EHD)

For harmonic analysis

Mollerstedt [12] - locomotive 
inverter, Harmonic State-
Space (HSS) modelling, 
Harmonic Transfer Matrix 

For harmonic stability analysis

1989
Larson, Baker, McIver [10] –
thyristor HVDC, numerical 
simulations derived Harmonic 
Cross-Coupling Matrix 

For harmonic/control analysis

2007
Harnefors [14] - DQ-frame model 
with the phase variation;
Wen, Boroyevich, et, al [15], 2016
Rygg, Molinas, Zhang, [16], 2016

For control design 

1986
Ngo [9] - PWM converter
State-Space Averaging 
with Park transformation 
DQ-frame linearized model

For control design 

2016



Harmonic Stability - Modeling of Power Converters
Unified multiple-frequency small-signal model 
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-  Nonlinear
-  Time-variant 
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- Resonance propagation in 

renewable clusters, power 

plants, and power grids

- Abnormal harmonics due 

to grid-converter 

interactions

- Cross-frequency coupling 

and oscillations in multiple 

converters

Future Power Electronic Based Power Systems
Multiple-timescale control interactions with cross-frequency coupling oscillations



Harmonic Stability - System Stability Analysis 
Modal analysis based on eigenvalues and eigenvectors (time-domain)
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Pros
- Global overview of oscillation modes
- Controller parameter sensitivity analysis 
- Participation factor analysis

Cons
- High computational requirement 
- Wide-timescale dynamics of converters 
- Very high-order state matrix (A)
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Harmonic Stability - System Stability Analysis 
Component Connection Method (CCM) - modular, scalable and simple
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Harmonic Stability - System Stability Analysis 
Impedance-based analysis (frequency-domain CCM)
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Pros and Cons
- Non-parametric (black-box)
- Local stability prediction 
- Input-output, no state information 



Harmonic Stability - System Stability Analysis 
Comparison of different system stability analysis methods 

Functionalities Basic state-space 
representation

Component-
connection method

Impedance-based 
analysis

Identification of dynamic modes + + ‒

Impact (participation factor) of state variables + + ‒

Input-output dynamics + + +

Design-oriented analysis Moderate + +

Black-box modeling (frequency-scanning) ‒ + +

Modularity and scalability Low High High

Conceptual Review of System Stability Analysis Tools

- Impedance-based analysis: a transfer function approach of CCM, physical insight 

- Presence of right half-plane (RHP) zeros/poles imposes constraints on the system partitioning and aggregation in the impedance-based analysis

- Prior knowledge of the system parameters and control structures required for CCM - challenge for multi-vendor power electronics based systems 



Conclusions

Harmonic stability is a breed of small-signal stability featuring waveform distortions
- Either harmonic or inter-harmonic interactions in power-electronic-based power systems
- Frequency-coupling oscillations both above and below the fundamental frequency
- Differing from passive electrical resonances in its dependence on converter control dynamics

Computationally-efficient stability analysis tools are demanded
- Adequate linearized models for capturing frequency-coupling dynamics of converters are missing 
- Large-scale power-electronic-based power systems are of ultra-high order dynamics
- There is lack of efficient time-domain simulation tools for mapping wide-band oscillations

Control methods for stabilizing power electronic based power systems
- Stabilization techniques for converters in low-inertia and low-SCR grids are needed
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