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Harmonic Stability - Definitions and Scope
(Inter-) harmonic oscillations induced by control interactions
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[1] X. Wang and F. Blaabjerg, “Harmonic stability in power electronic based power systems: concept, modeling, and analysis,” IEEE Trans. Smart Grid, Early Access, 2018.
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Harmonic Stability - Definitions and Scope ’
Sideband oscillations and harmonic oscillationsl]
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f,: Grid fundamental frequency, f,: Switching frequency
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Harmonic Stability - Mechanism
Sideband oscillations - frequency coupling nature of DQ-transformation
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Harmonic Stability - Mechanism

Sideband oscillations - asymmetric control system dynamics

- Asymmetrical control system dynamics lead to frequency-coupling oscillations!
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Harmonic Stability - Mechanism 6\
Negative damping at the fundamental frequency (dc in the dg-frame)
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- How about the impedance behavior with ac perturbations? Frequency range of negative damping?

B. Wen, D. Boroyevich, R. Burgos, P. Mattavelli, and Z. Shen, “Analysis of D-Q small-signal impedance of grid-tied inverters,” IEEE Trans. Power Electron., vol. 31, no. 1, pp. 675-687, Jan. 2016.
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Harmonic Stability - Mechanism

Negative damping with vector current control
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Voltage-Source Converter (VSC) with vector current control

Impedance equivalent
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Closed-loop current control with proportional controller
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Harmonic Stability - Mechanism s
Negative damping with PLL
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Harmonic Stability - Mechanism ?
Negative damping with PLL
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Lab Tests @ AAU
AC (400 V) Distribution Grid

- b-paralleled three-phase grid converters
(50 kVA in total) with LCL-filters

- Rapid control prototyping platform with
DS1007 dSPACE systems

- Scalable and reconfigurable for different
operating scenarios




Three-Converter Interactions
VCC with LCL-Filters
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Three-Converter Interactions >
PLL with different Short-Circuit Ratio (SCR) of the grid
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Real-Life Challenges >
Control interactions of multiple converters

©CSG
VSC-HVDC + Offshore Wind Electrification of railways MMC-HVDC Transmission

Filter resonance in the offshore Locomotives is out of control Transformer resonance with
HVDC converter station because of abnormal harmonics current control of MMC

\. > O IEEE



Harmonic Stability - Modeling of Power Converters
Small-signal models for harmonic analysis and control design

1970

Persson [7] - thyristor HYDC
Frequency response analysis
Describing Function with single
sinusoidal inputs

For control design

1986

Ngo [9] - PWM converter
State-Space Averaging
with Park transformation
DQ-frame linearized model

For control design

1997 :

Mattavelli, Verghese, Stankovic
[11] - thyristor FACTS devices
Dynamic Phasor with time-variant
Fourier coefficients

For control design

2003

Rico, Madrigal, Acha [13] -
STATCOM with phase angle
control, Extended Harmonic
Domain (EHD)

For harmonic analysis

2014

Cespedes and Sun [17] - stability
effect of PLL on PWM converter
Harmonic Balance, Multi-Input
Describing Functions

For control design

1985

1989

2000

2007

Sakui and Fujita [8] - thyristor
rectifier, Switching Function
model w/o firing angle
variation considered

For harmonic analysis

Larson, Baker, Mclver [10] —
thyristor HVDC, numerical
simulations derived Harmonic
Cross-Coupling Matrix

For harmonic/control analysis

Mollerstedt [12] - locomotive
inverter, Harmonic State-
Space (HSS) modelling,
Harmonic Transfer Matrix

For harmonic stability analysis

Harnefors [14] - DQ-frame model

with the phase variation;

Wen, Boroyevich, et, al [15], 2016
Rygg, Molinas, Zhang, [16], 2016

For control design

2016

Wang, Harnefors, Blaabjerg [18] -
Unified Impedance Model from
dg-frame to aB-frame, 2"d-order
Harmonic Transfer Matrix

For control design
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Harmonic Stability - Modeling of Power Converters
Unified multiple-frequency small-signal model

- Nonlinear

- Time-variant AC-DC Converters (e.g. VSCs)

Switching Model
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- Both continuous and discrete dynamics
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y A Y A
- Nonlinear . . . . -
- Time-invariant DQ-Frame Averaged Model Dynamic Phasor Model Dynamic Phasor Model Nonlinear Time-Periodic
Continuous (Balanced Three-Phase) (Unbalanced Three-Phase) (Switching Frequency) Model (Multiple Sinusoids)
B h 4 v A
- Linear Harmonic Linearization Linear Time-Periodic Model
- Time-invariant DQ-Frame LTI Model - )
. (Harmonic Balance) (Harmonic State-Space)
- Continuous
- Linear r i 4 4 y 5
- Time-invariant Alpha-Beta-Frame Model Harmonic State-Space Model Harmonic State-Space Model
- Continuous (Balanced Three-Phase) (Unbalanced Three-Phase) (Extended to Switching Frequency)

- Harmonic Transfer Function
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Future Power Electronic Based Power Systems 1
Multiple-timescale control interactions with cross-frequency coupling oscillations
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Harmonic Stability - System Stability Analysis
Modal analysis based on eigenvalues and eigenvectors (time-domain)

x = f(x,u) Ax = AAX + BAu 3
y = g(x,u) Ay = CAx + DAu det(ASRAD) = 0
. ( \
{ X0 = f(XO, uo) =0 ‘af1 afl' - Eigenvalues 4;
dx, ax, A =0t jw;
A= 05 0. Right eigenvector
L oo L A¢l - Ai¢i
\_ -0x, 0x,,] ) - Left eigenvector
YiA = Y4,
- J
Pros Cons
- Global overview of oscillation modes - High computational requirement
- Controller parameter sensitivity analysis - Wide-timescale dynamics of converters
- Participation factor analysis - Very high-order state matrix (A)
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Harmonic Stability - System Stability Analysis e
Component Connection Method (CCM) - modular, scalable and simple

- x =4l a) ~ Ax=FAx + HAa
b =g(x,a) Ab = JAx + KAa
Composite Diagonal matrices
component model F,H J, K
x = f(x,u)
y = g(x,u) ‘
[ Aa = Ly;Ab + L12Au - Ax=AAx+BAu
i Ay = L21Ab + L22Au Ab = CAx + DAu

Sparse matrices Lij
{ Linear algebra ?
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Harmonic Stability - System Stability Analysis
Impedance-based analysis (frequency-domain CCM)
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Pros and Cons

- Non-parametric (black-box)

- Local stability prediction

- Input-output, no state information
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Harmonic Stability - System Stability Analysis
Comparison of different system stability analysis methods

Conceptual Review of System Stability Analysis Tools

. .- Basic state-space Component- Impedance-based
Functionalities ; : ]
representation connection method analysis
+ + —

Identification of dynamic modes

Impact (participation factor) of state variables + + —
Input-output dynamics + + +
Design-oriented analysis Moderate + +
Black-box modeling (frequency-scanning) — + +
Modularity and scalability Low High High

- Impedance-based analysis: a transfer function approach of CCM, physical insight
- Presence of right half-plane (RHP) zeros/poles imposes constraints on the system partitioning and aggregation in the impedance-based analysis

- Prior knowledge of the system parameters and control structures required for CCM - challenge for multi-vendor power electronics based systems
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Conclusions 21

© Harmonic stability is a breed of small-signal stability featuring waveform distortions
- Either harmonic or inter-harmonic interactions in power-electronic-based power systems
- Frequency-coupling oscillations both above and below the fundamental frequency
- Differing from passive electrical resonances in its dependence on converter control dynamics

© Computationally-efficient stability analysis tools are demanded
- Adequate linearized models for capturing frequency-coupling dynamics of converters are missing
- Large-scale power-electronic-based power systems are of ultra-high order dynamics
- There is lack of efficient time-domain simulation tools for mapping wide-band oscillations

© Control methods for stabilizing power electronic based power systems
- Stabilization techniques for converters in low-inertia and low-SCR grids are needed
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