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Transient Stability 
Synchronization stability under large disturbance

Power system stability

Rotor angle stability

Voltage stability

Small- signal angle stability

Transient stability

Small-signal voltage stability

Large-signal voltage stability

Frequency stability

Transient stability: Maintain synchronism with the power grid under large disturbance  



Transient Stability 
Synchronous Generator (SG)
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Transient Stability 
Critical fault clearing angle/time  

Single-machine infinite-bus power system

Synchronous generator
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Transient Stability 
Voltage-Source Converter (VSC)

Voltage-Source Converter (VSC)
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Difference between VSC and SG

- No natural “rotor speed” response in VSC - lack of physical link with synchronization  

- Synchronization is realized by power control and/or Phase-Locked Loop (PLL)

- Limited overcurrent capability - trigger current-mode control 



Control of VSC
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Transient Stability 
PSC-VSC within overcurrent limit

PSC-VSC when ig < Ilimit
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Dynamic representation of PSC-VSC as a Voltage Source 

- Decoupled timescale: transient stability: 2s ~ 3s, voltage control: 1ms ~ 10ms[1][3] 

- Voltage control loop can be simplified as a unity gain 

- Only the influence of active power control  



Transient Stability 
First-order nonlinear system
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Transient Stability 
Phase-portrait analysis 
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Phase portrait of first-order nonlinear systems

First-order nonlinear system with equilibrium points (          ) 

- For any initial conditions, the system is always stabilized at the closest sink point

- Zero overshoot in the dynamic response 

0



Transient Stability 
Disconnection of Xg2 (ig < Ilimit)

Abrupt disconnection of transmission line Xg2 (ig < Ilimit)
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With equilibrium points after disturbance

- PSC-VSC has no transient stability problem 

- Overdamped response (zero overshoot)

- Better performance than SG
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Transient Stability 
Disconnection of Xg2 (ig < Ilimit)
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Simulation and experimental results 



Transient Stability 
High-impedance fault - CCA/CCT

Grid fault with high short-circuit impedance Xgnd (ig < Ilimit)
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Transient Stability 
High impedance fault - self-restoration 

0
−5

0

5

10

15

20

25

30

δ 



1/2π π 3/2π 2π 5/2π 

a

b

c e c1

fault clear 

Lose synchronism,

around one cycle 

of swing

re-synchronization

δu 

pre-fault 

duringfault 
post-fault 

Phase portrait analysis when the fault is cleared beyond the CCA  

Self-restoration with PSC-VSC

- The system will be re-synchronized (point c1) if the fault is cleared beyond the CCA (point e) 

- Reduce the risk of the system being collapsed due to the delayed fault clearance 



Transient Stability 
High impedance fault - simulations

Fault is not cleared - no equilibrium points

Fault clearing time < CCT

Fault clearing time > CCT
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fault fault cleared

Po: [1 kW/div]

δ: [π/div]

iga: [20A/div]
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 [1 s/div]

Transient Stability 
High impedance fault - experiments
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Transient Stability 
PSC-VSC reaching overcurrent limit

Dynamic representation of PSC-VSC as a Current Source 

- Decoupled timescale: transient stability: 2s ~ 3s, current control: 1ms ~ 10ms[1][3] 

- Current control loop can be simplified as a unity gain 

- Only the influence of PLL

PSC-VSC when ig = Ilimit
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Transient Stability 
Dynamic model of PLL effect 

Dynamic equivalent of PSC-VSC when ig = Ilimit Block diagram of PLL
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Transient Stability 
Second-order nonlinear system

Dynamic model of PLL for transient stability analysis
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Transient Stability 
Voltage-angle curve of PLL 

Voltage-angle curve of PLL
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- Before point c, Vzq>Vgsinδ, ωPLL increases 

- After point c, Vzq<Vgsinδ, ωPLL decreases

- Loss of synchronization if ωPLL> ωg at point e
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Transient Stability 
Design-oriented analysis 

Damping ratio: 
Kp+Ki/s VgsinδPLL 
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Dynamic model of PLL for transient stability analysis

Settling time: 

- Large damping ratio and settling time lead to better transient behavior. 

- With Ki = 0, the PLL is a first-order nonlinear system - small Ki is preferred!



Transient Stability 
Simulations - low-impedance fault

High damping ratio PLL 

- Switch to current control 

- Remain synchronization 

- Switch back to PSC when 

the fault is cleared 



Transient Stability 
Simulations - low-impedance fault

Low damping ratio PLL

- Switch to current control 

- Loss of synchronization

- Switch back to PSC after 

the fault is cleared, and the 

system is resynchronized



Operating Scenarios PSC-VSC SG

With Equilibrium Points No transient stability problem May lose synchronization

No Equilibrium

Points during 

the fault

High-impedance

fault

- Fixed CCA and CCT 

- Re-synchronize with the grid even if 

the fault is cleared beyond CCA

- CCA and CCT are dependent on 

the fault condition

- May lead to system collapse if the 

fault is cleared beyond CCA

Low-impedance

fault

- Switching to current-limit control, and 

the stability is depended on the PLL

- Re-synchronize with the grid after the 

fault is cleared

- Same as high impedance fault

Highlights

- The first-order nonlinear system with equilibrium points has no transient stability problem 

- For higher-order systems, the controller can be tuned for first-order dynamic during transients

- Control flexibility can bring better stability in power electronic based power systems

Conclusions
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Thank you! Questions? 



 

Transient Stability Analysis of VSC-HVDC Systems 

Xiongfei Wang, Aalborg University  

 

 

Voltage-Source Converters (VSCs) are critical components in modern dc systems. 
The VSC-grid interactions pose new challenges on the system stability and power 
quality. Many research efforts have been made to address the small-signal stability of 
grid-connected VSC systems. Yet, less attention was given to the transient dynamics 
of VSCs with large grid disturbances. Very few works were reported on the transient 
stability of grid-connected VSCs, i.e. the ability to maintain synchronism with the 
power grid under severe transient disturbance. This presentation will give a 
comprehensive discussion on the transient stability of VSC-HVDC systems. The 
influences of synchronization control schemes based on active power control and 
phase-locked loop are analyzed by using the phase portrait. A number of superior 
features of the VSC over synchronous generators are revealed, and verified by 
simulations and down-scale experiments.” 
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