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Transient Stability
Synchronization stability under large disturbance

Small- signal angle stability

— Rotor angle stability{
Transient stability

Power system stability — Frequency stability

Small-signal voltage stability

— Voltage stability

Large-signal voltage stability

Transient stability: Maintain synchronism with the power grid under large disturbance
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Transient Stability
Synchronous Generator (SG)
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Transient Stability
Critical fault clearing angle/time
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Synchronous generator
Single-machine infinite-bus power system
Fault clearing angle: &, Pe /Pre-fault

Critical clearing angle (CCA) .

Critical clearing time (CCT)
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Transient Stability
Voltage-Source Converter (VSC)
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Voltage-Source Converter (VSC)

Single-VSC infinite-bus power system

Infinite
bus

Difference between VSC and SG

- No natural “rotor speed” response in VSC - lack of physical link with synchronization
- Synchronization is realized by power control and/or Phase-Locked Loop (PLL)
- Limited overcurrent capability - trigger current-mode control
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Control of VSC

Grid-Forming Control
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Transient Stability
PSC-VSC within overcurrent limit
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Dynamic representation of PSC-VSC as a Voltage Source

- Decoupled timescale: transient stability: 2s ~ 3s, voltage control: 1ms ~ 10ms(Hi3]

- Voltage control loop can be simplified as a unity gain
- Only the influence of active power control
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Transient Stability
First-order nonlinear system
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Transient Stability
Phase-portrait analysis

51\ ® Sink
O Source

Phase portrait of first-order nonlinear systems

First-order nonlinear system with equilibrium points (5 =0)

- For any initial conditions, the system is always stabilized at the closest sink point
- Zero overshoot in the dynamic response

«

DEPARTMENT OF ENERGY TECHNOLOGY
AALBORG UNIVERSITY



N\

Transient Stability 1
Disconnection of X, (i < ljmi
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Post-disturbance

b 7 - PSC-VSC has no transient stability problem
\ / - Overdamped response (zero overshoot)
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Phase portrait analysis
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Transient Stability
Disconnection of X, (iy < ljim;)

Simulation and experimental results
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Experimental results
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Transient Stability
High-impedance fault - CCA/CCT

DC/AC Converter
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Phase portrait analysis
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Transient Stability 1
High impedance fault - self-restoration
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Phase portrait analysis when the fault is cleared beyond the CCA

Self-restoration with PSC-VSC

- The system will be re-synchronized (point c,) if the fault is cleared beyond the CCA (point e)
- Reduce the risk of the system being collapsed due to the delayed fault clearance
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Transient Stability
High impedance fault - simulations
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Transient Stability
High impedance fault - experiments
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Transient Stability 1
PSC-VSC reaching overcurrent limit
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Dynamic representation of PSC-VSC as a Current Source

- Decoupled timescale: transient stability: 2s ~ 3s, current control: 1ms ~ 10ms[tiis]
- Current control loop can be simplified as a unity gain

- Only the influence of PLL
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Transient Stability

Dynamic model of PLL effect
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Block diagram of PLL
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Transient Stability
Second-order nonlinear system
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Dynamic model of PLL for transient stability analysis
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Transient Stability
Voltage-angle curve of PLL
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Voltage-angle curve of PLL
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Governing equation of PLL

qu _Vg sin 5PLL - Deq 'SPLL = HquPLL

Similarly to SG

- Before point ¢, V,>Vsind, wp, increases
- After point ¢, V,,<Vsind, wp | decreases
- Loss of synchronization if wp, | > wy at point e
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% Transient Stability
% Design-oriented analysis
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Dynamic model of PLL for transient stability analysis
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- Large damping ratio and settling time lead to better transient behavior.
- With Ki = 0, the PLL is a first-order nonlinear system - small K; is preferred!
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Transient Stability

Simulations - low-impedance fault
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High damping ratio PLL

- Switch to current control

- Remain synchronization
- Switch back to PSC when
the fault is cleared
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Transient Stability
Simulations - low-impedance fault
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Conclusions

Operating Scenarios PSC-VSC

With Equilibrium Points No transient stability problem May lose synchronization

. - CCA and CCT are dependent on
- Fixed CCAand CCT

High-impedance ) , ) , the fault condition
ilibri fault - Re-synchronize with the grid even if May lead to system collapse if the
No Equilibrium the fault is cleared beyond CCA y _ y P
Points during fault is cleared beyond CCA
the fault - Switching to current-limit control, and
Low-impedance the stability is depended on the PLL

. : . - Same as high impedance fault
fault - Re-synchronize with the grid after the

fault is cleared

Highlights
- The first-order nonlinear system with equilibrium points has no transient stability problem

- For higher-order systems, the controller can be tuned for first-order dynamic during transients

- Control flexibility can bring better stability in power electronic based power systems
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Thank you! Questions?
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Transient Stability Analysis of VSC-HVDC Systems
Xiongfei Wang, Aalborg University

Voltage-Source Converters (VSCs) are critical components in modern dc systems.
The VSC-grid interactions pose new challenges on the system stability and power
guality. Many research efforts have been made to address the small-signal stability of
grid-connected VSC systems. Yet, less attention was given to the transient dynamics
of VSCs with large grid disturbances. Very few works were reported on the transient
stability of grid-connected VSCs, i.e. the ability to maintain synchronism with the
power grid under severe transient disturbance. This presentation will give a
comprehensive discussion on the transient stability of VSC-HVDC systems. The
influences of synchronization control schemes based on active power control and
phase-locked loop are analyzed by using the phase portrait. A number of superior
features of the VSC over synchronous generators are revealed, and verified by
simulations and down-scale experiments.”
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