

Small-Signal and Transient Stability Analysis of Voltage-Source Converters

Heng Wu

Supervisor: Prof. Xiongfei Wang Department of Energy Technology Aalborg University, Denmark

> AALBORG UNIVERSITY DENMARK

Outline

□ Introduction

□ Small-Signal Stability Analysis of MMCs

- Grid-Forming MMCs
- Grid-Following MMCs

□ Transient Stability Analysis of VSCs

- Grid-Forming VSCs
- Grid-Following VSCs

□ Conclusion

Outline

□ Introduction

□ Small-Signal Stability Analysis of MMCs

- Grid-Forming MMCs
- Grid-Following MMCs

□ Transient Stability Analysis of VSCs

- Grid-Forming VSCs
- Grid-Following VSCs

□ Conclusion

Grid-connected voltage-source converters (VSCs)

Real-world challenges

Small-signal stability

C. Zou, H. Rao, S. Xu, et al., "Analysis of resonance between a VSC-HVDC converter and the ac grid," *IEEE Trans. Power Electron.*, vol. 33, no. 12, pp. 10157–10168, 2018.
C. Buchhagen, M. Greve, A. Menze, and J. Jung, "Harmonic stability-practical experience of a TSO," *Proc. 15th Wind Integration Workshop*, pp. 1–6, 2016.

DEPARTMENT OF ENERGY TECHNOLOGY AALBORG UNIVERSITY

Real-world challenges

Transient stability

In 2019, the Trip of an offshore wind power plant during grid faults lead to the blackout in London ^{[1]-[2]}

[1] National Grid, "Technical Report on the events of 9 August 2019," UK, Sep. 2019, [Online]. Available: <u>https://www.nationalgrideso.com/document/152346/download</u> [2] National Grid, "Appendices to the Technical Report on the events of 9 August 2019." UK, Sep. 2019, [Online]. Available: <u>https://www.ofgem.gov.uk/system/files/docs/2019/09/eso_technical_report_-_appendices_-_final.pdf</u>

Motivations Grid-Forming and Grid-Following VSCs

Small-signal and large-signal synchronization stability (transient stability) of VSCs

J. Matevosyan et al., "GFM inverters," IEEE Power & Energy Magazine, vol. 17, no. 6, pp. 89–98, November/December 2019.

Scientific challenges and research questions

Small-signal stability: internal dynamics of MMCs

Source: [1] K. Ngo (1986). [2] L. Harnefors (2007). [3] B. Wen (2015). [4] X. Wang (2016)

A

DEPARTMENT OF ENERGY TECHNOLOGY AALBORG UNIVERSITY Source: [1] E. Rakhshani (2013). [2] Hani Saad (2017).

Scientific challenges and research questions Transient stability basics of synchronous generators (SGs)

Critical clearing angle (CCA) Critical clearing time (CCT)

AALBORG UNIVERSITY

Scientific challenges and research questions Transient stability of VSCs

- Results of SGs cannot be directly borrowed
- Difficult to obtain analytical solution for nonlinear systems

EMT simulation-based transient stability analysis ^{[1]-[2]}

- × Case-specific results
- × Limited analytical insight

Q3 and Q4: Design-oriented transient stability analysis considering different synchronization dynamics?

Thesis structure

Small-signal stability of MMCs

- Q1: LTI model
- Q2: Stability impact of the CCSC

Transient stability of VSCs

- **Q3:** Transient stability impact of the active power control
- Q4: Transient stability impact of the PLL

Small-signal stability of MMCs

- Small-signal modeling and stability analysis of GFM-MMC
- Small-signal modeling and stability analysis of GFL-MMC

Impact of internal dynamics

Transient stability of VSCs

- Large-signal modeling and transient stability analysis of GFM-VSC
- Large-signal modeling and transient stability analysis of GFL-VSC

Impact of synchronization dynamics

Outline

Introduction

□ Small-Signal Stability Analysis of MMCs

- Grid-Forming MMCs
- Grid-Following MMCs

□ Transient Stability Analysis of VSCs

- Grid-Forming VSCs
- Grid-Following VSCs

Conclusion

GFM-MMC with the inductive load

AALBORG UNIVERSITY

N. M. Wereley, "Analysis and control of linear periodically time varying systems," Ph.D. dissertation, Dept. Aeronaut. Astronaut., Massachusetts, Inst. Technol., Cambridge, MA, USA, 1991. DEPAR

Frequency coupling dynamics is captured

Impedance matrix of the MMC Open-loop control

$$\mathbf{Z}_{\mathbf{MMC}} = \begin{bmatrix} \ddots & \vdots & \ddots \\ & Z_0 \left(s - j\omega_0 \right) & 0 & Z_{-2} \left(s + j\omega_0 \right) \\ & \ddots & 0 & Z_0 \left(s \right) & 0 & \cdots \\ & Z_2 \left(s - j\omega_0 \right) & 0 & Z_0 \left(s + j\omega_0 \right) \\ & \vdots & \ddots & \vdots & \ddots \end{bmatrix}$$

Centered impedance

Frequency-coupled impedances

Significant impact of internal dynamics

Source: [1] E. Rakhshani (2013). [2] Hani Saad (2017).

Impedance matrix of the MMC GFM control with PR voltage regulator

Centered impedance

Frequency-coupled impedances

Case studies with inductive load PR voltage regulator

-1

-2

-5

-4

Capacitance and negative resistance in Z_{close0} interacts with inductive load

0

1

-2

Real Axis

-1

-3

Case studies with inductive load PIR voltage regulator

Reduce magnitude of Z_{close0} to avoid the intersection

18

t(s)

Outline

Introduction

□ Small-Signal Stability Analysis of MMCs

- Grid-Forming MMCs
- Grid-Following MMCs
- □ Transient Stability Analysis of VSCs
 - Grid-Forming VSCs
 - Grid-Following VSCs

Conclusion

AC dynamic impact of the ZSCC control

[1] J. Freytes et al., "Improving small-signal stability of an MMC with CCSC by control of the internally stored energy," *IEEE Trans. Power Del.*, vol. 33, no. 1, pp. 429–439, Feb. 2018.

DEPARTMENT OF ENERGY TECHNOLOGY AALBORG UNIVERSITY

Modal integration

[1] J. Freytes et al., "Improving small-signal stability of an MMC with CCSC by control of the internally stored energy," *IEEE Trans. Power Del.*, vol. 33, no. 1, pp. 429–439, Feb. 2018.

[2] **H. Wu** and X. Wang, "Dynamic impact of zero-sequence circulating current on modular multilevel converters: complex valued AC impedance modeling and analysis," *IEEE J.*

DEPARTMENT OF ENERGY TECHNOLOGY Emerg. Sel. Topics Power Electron., vol. 8, no. 2, pp. 1947-1963, June 2020.

Impact of ZSCC control (Z_q =0.5pu)

Resonant peak appears in Z_{mmceq} without the ZSCC control, destabilize the system under the weak grid

DEPARTMENT OF ENERGY TECHNOLOGY AALBORG UNIVERSITY

ZSCC control is recommended to stabilize the system

Summary

General modeling framework: complex-valued harmonic state space method

- LTI representation
- SISO equivalent, facilitate stability analysis

Power stage (open-loop) model of the MMC

- Capacitance in Z₀(s)
- Non-negligible frequency-coupled impedances

Grid-forming control

- Capacitance + negative resistance in Z₀(s) with PR regulator
- Unstable with inductive load
- Stabilization by PIR regulator

Grid-following control

 Stabilization effect of ZSCC control under the weak ac grid

Outline

□ Introduction

□ Small-Signal Stability Analysis of MMCs

- Grid-Forming MMCs
- Grid-Following MMCs

□ Transient Stability Analysis of VSCs

- Grid-Forming VSCs
- Grid-Following VSCs

□ Conclusion

GFM-VSCs with the first-order active power control loop

First-order nonlinear system with equilibrium points

Solving $\delta(t)$

Always converge to the closest stable equilibrium point without overshoot

[1] L. Zhang, L. Harnefors, and H. -P. Nee. "Power-synchronization control of grid-connected voltage-source converters". IEEE Trans. Power Syst., vol. 25, no. 2, pp. 809-820, May. 2010. AALBORG UNIVERSITY

Transient stability of PSC-VSC w/o triggering current limit

Case I - presence of equilibrium points after disturbances

With equilibrium points after disturbance

- PSC-VSC has no transient stability problem
- Better performance than SG

10

H. Wu and X. Wang, "Design-oriented transient stability analysis of gridconnected converters with power synchronization control," *IEEE Trans. Ind. Electron.*, vol. 66, no. 8, pp. 6473–6482, Aug. 2019.

Transient stability of PSC-VSC w/o triggering current limit

Case II - No equilibrium points after disturbances

Constant Critical Clearing Angle (CCA)

 $CCA = \delta_u$

H. Wu and X. Wang, "Design-oriented transient stability analysis of gridconnected converters with power synchronization control," *IEEE Trans. Ind. Electron.*, vol. 66, no. 8, pp. 6473–6482, Aug. 2019.

Transient stability of PSC-VSC w/o triggering current limit

Case II - No equilibrium points after disturbances

Resynchronization Capability

• Reduce the risk of system collapse due to the delayed fault clearance

H. Wu and X. Wang, "Design-oriented transient stability analysis of gridconnected converters with power synchronization control," *IEEE Trans. Ind. Electron.*, vol. 66, no. 8, pp. 6473–6482, Aug. 2019.

Experimental Results

Comparaison with VSG

Outline

Introduction

□ Small-Signal Stability Analysis of MMCs

- Grid-Forming MMCs
- Grid-Following MMCs

□ Transient Stability Analysis of VSCs

- Grid-Forming VSCs
- Grid-Following VSCs

Conclusion

GFL-VSCs with PLL

DEPARTMENT OF ENERGY TECHNOLOGY AALBORG UNIVERSITY

Second-order nonlinear synchronization dynamics

PLL: <i>V-δ</i> swing equation	SG: <i>P-δ</i> swing equation	
$v_{zq} - V_g \sin \delta - D_{eq} \dot{\delta} = H_{eq} \ddot{\delta}$	$P_m - \frac{3V_{PCC}V_g}{2X_g}\sin\delta - D\dot{\delta} = H\ddot{\delta}$	

- Pre-fault: $I_d = I_{max}$, $I_q = 0$
- Post-fault: $I_d=0$, $I_q=-I_{max}$

Phase portrait analysis

 $\zeta = \frac{K_p}{2} \sqrt{\frac{V_{gn}}{K_i}}$

- Better transient stability with increased $\boldsymbol{\zeta}$
- Always stable with infinite ζ ($K_i=0$, first-order PLL)

H. Wu and X. Wang, "Design-oriented transient stability analysis of PLL-synchronized voltage-source converters," IEEE Trans. Power Electron., vol. 35, no. 4, pp. 3573 - 3589, Apr. 2020

Adaptive PLL

- Steady-state: second-order (K_i=K_{i0})
- Transient: first-order PLL (*K*_i=0)

H. Wu and X. Wang, "Design-oriented transient stability analysis of PLL-synchronized voltage-source converters," IEEE Trans. Power Electron., vol. 35, no. 4, pp. 3573 - 3589, Apr. 2020

Experimental Results

 V_q drops to 0.14 pu

Adaptive PLL, stable

Experimental Results

Adaptive PLL, stable

Summary

Phase portrait

Superior transient stability performance of the first-order synchronization loop

Grid-forming control

- No transient stability problem with equilibrium points
- Fixed CCA/CCT
- Resynchronization capability even if FCT > CCT

Grid-following control

Adaptive PLL

Outline

□ Introduction

□ Small-Signal Stability Analysis of MMCs

- Grid-Forming MMCs
- Grid-Following MMCs

□ Transient Stability Analysis of VSCs

- Grid-Forming VSCs
- Grid-Following VSCs

□ Conclusion

Conclusion

	Modeling methodologies	Stability assessment	Stabilization
Small-signal stability of MMCs	Complex-valued HSS method	Multi-variable frequency domain theory	PIR control for GFM-MMCZSCC control for GFL-MMC
Transient stability of VSCs	Differential equations	Phase portrait	First-order power control for GFM-VSCAdaptive PLL for GFL-VSC

Publication List

Journal Papers

- 1. H. Wu and X. Wang, "Virtual-flux-based passivation of current control for grid-connected VSCs", IEEE Trans. Power Electron., early access, 2020.
- 2. H. Wu and X. Wang, "Dynamic impact of zero-sequence circulating current on modular multilevel converters: complex valued AC impedance modeling and analysis," *IEEE J. Emerg. Sel. Topics Power Electron.*, vol. 8, no. 2, pp. 1947-1963, June 2020.
- 3. H. Wu and X. Wang, "A mode-adaptive power-angle control method for transient stability enhancement of virtual synchronous generators," *IEEE J. Emerg. Sel. Topics Power Electron.*, vol. 8, no. 2, pp. 1034-1049, June 2020.
- 4. H. Wu and X. Wang, "Design-oriented transient stability analysis of PLL-synchronized voltage-source converters," *IEEE Trans. Power Electron.*, vol. 35, no. 4, pp. 3573 3589, Apr. 2020.
- 5. H. Wu, X. Wang, and Ł. Kocewiak, "Impedance-based stability analysis of voltage-controlled MMCs feeding linear AC systems," IEEE J. Emerg. Sel. Topics Power Electron., early access, 2019.
- 6. H. Wu and X. Wang, "Design-oriented transient stability analysis of grid-connected converters with power synchronization control" *IEEE Trans. Ind. Electron.*, vol. 66, no. 8, pp. 6473–6482, Aug. 2019.

Conference Papers

- 1. H. Wu and X. Wang, "An adaptive phase-locked loop for the transient stability enhancement of grid-connected voltage source converters," in *Proc. IEEE Energy Convers. Congr. Expo.*, 2018, pp. 5892–5898.
- 2. H. Wu and X. Wang, "Transient stability impact of the phase-locked loop on grid-connected voltage source converters," in *Proc. IEEE Int. Power Electron. Conf. (IPEC-ECCE Asia)*, 2018, pp. 2673–2680.
- 3. H. Wu, X. Wang, L. Kocewiak, and L. Harnefors, "AC impedance modeling of modular multilevel converters and two-level voltage-source converters: Similarities and differences," in *Proc. IEEE 19th Workshop Control. Model. Power Electron. (COMPEL)*, Jun. 2018, pp. 1–8.
- 4. H. Wu and X. Wang, "Transient angle stability analysis of grid-connected converters with the first-order active power loop," in *Proc. IEEE Appl. Power Electron. Conf. Expo.*, Mar. 2018, pp. 3011–3016.

Acknowledgement

Prof. Xiongfei Wang, Aalborg University

Asst. Prof. Dongsheng Yang, Eindhoven University of Technology

Dr. Łukasz Kocewiak, Ørsted Wind Power Prof. Rainer Marquardt, Bundeswehr University Munich Prof. Claus Hillermeier, Bundeswehr University Munich

Prof. Francesco lannuzzo, Aalborg UniversityProf. Paolo Mattavelli, University of PadovaProf. Tim Green, Imperial College LondonProf. Frede Blaabjerg, Aalborg University

All my colleagues and friends at the Department of Energy Technology, AAU.

Universität 🔬 München

Orsted

My family

PhD Defense, Jun. 12, 2020

Small-Signal and Transient Stability Analysis of Voltage-Source Converters

Contact: Heng Wu Email: hew@et.aau.dk

egrid.et.aau.dk

AALBORG UNIVERSITY